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INTRODUCTION

Chances ure, since you have purchesed the AvaLox Slide Rule, you
are interested in slids rules and know something about them.

You know, for instance, that all numerical slide rules are based on
logarithms.  You can add them to multiply, and subtract them to
divide.  The various seales—Jolded, inverted, to the base e, ete., are
based on the same principles, The more types of scales, the more
caleulations you can make.

The basic problems that a numerical slide rule solves are multiphea-
tion, division, taking roots, and raising to powers.  Until the Anavox
Shide Rule was invented, there was no similar ool for dealing with
physical quantities having both size snd dimension. This new slide
rule extends the basic principles of the slide rule to dimensions snd
can be o very useful device, With your Anavor Slide Rule you will
b able to perform dimensionsl opsrations, just as with your numerical
rule you perform numeriesl operations. Your Axavox Slide Rule also
has several of the most useful numerical seales so you may perform
many numerical operations directly on your dimensionsl rule. Your
Axavon Slide Rule can ke used in the following ways:

(1) For checking equations dimensionally

resistance X charge

: = ecurrent?
inductance

la it true that

(2) As an aid in recalling formulas

For & conducting sphere of radius r, is the capacitance C

given by
r . & T
¢ 4x or ey € dre



(3) As an aid In deriving formulas

If the formula for the period of & simple pendulum of length £
in & gravitational field of acceleration g has the form

T = AL',

what are the values of r and s 7

(4) For performing numerical calculations
Multiplication, division, squares, square reots, and other nu-
merical calculations may be performed. For example,
6.88 X 170 ;
2¢v/215 X 0440

The first thres of the four uses fall into the eategory of dimznsional
analysis. You can obtain the answers to the above problems i a
few seconds on the Anavrox Slide Rule.

The AxaLon Slide Rule is an aid to students, engineers, scienlists,
and teachers in understanding and employing dimensions and units
in & simple yet rigorous manner.

Remember—a slide rule, like o list of formulas or & table of values,
is not intended to substitute for thinking. It helps you by acting as
your “bookkeeper'” in performing tasks which would take much longer
by hand. The Axarox Slide Rule will not climinate the creative
thinking process that leads you to a specific formula or derivation,
but it will make the checking-out process faster and simpler.

Attain accuraey first. Let the speed come later. And keep in mind
that numerical slide rules are aceurate to about one percent on the
more tightly compressed scales. A hairline's difference can mean &
fow thousandths error in some numerical calculations. The precise
setting of scales is especially important in using the Axavon Slide Rule.



CHAPTER 1
THE AMNALON SLIDE RULE

1. What is the ANALON?

Your Anaron Slide Rule is equipped with scales on which physical
dimensions such &s length, time, mass, charge, force, Vforee, (force)t,
(farce)™, ete. are loented.

These dimensions can be multiplied, divided sod operated upen in
much the same way as ordinary numbers. For example, dividing
length by time gives the result velocify in much the same way that
dividing 24 by 6 gives the result 4. Similarly, multplying resistance
by (current)® gives the result power in much the same way that mul-
tiplying 12 by (3)* gives the result 108.

We must distingaish between dimensions and units.

The term dimensions refers to physical concepts such as length,
mass, lime, ete.  Associated with every dimension are certain units

of measure or simply units. For example, length may be measured
in units of feet, centimneters, microns, ete.

A dimension is not affected by the size of the unit of measure
cmployed; length remains length regardless of whether it is measured
in units of feet, angstroms, or cubits.

Your AxaLos Slide Rule multiplies and divides dimensions, not
units, It is thus a qualitative slide rule rather than s quantitative elide
rule. A length, if doubled, is still a length, and & mass, if halved,
is still & mass. Therefore, in dimensional caleulations all numerical
factors are ignored. For example, in the formula

E = kb,
the dimenstonal relationship is
Energy = mass X (velocity)?,

and the factor § is ignored.



3. Reading the scales

The numerical scales sre read ss on & numerical elide ruls. If you
are not familinr with the theory and operation of the numerical slide
rule, refer to the K&E Deci-Lon® Msnual No. 68 2069 or any of
the other excellent texts available.

The dimensionsl ecales might appear confusing at first, but they
are extremely easy to read. Instead of the location of all possible
nurnbera (up to four digits), thess scales are concerned only with the
location of & relatively small number of spscific quantities,

The U and V scales

The physical quanuties are shown directly on the U and V scales
: [Fig. 2a). For example, the symbal F on the V scale represents
the physical quantity FORCE. The vertical black line below the
aymbol F is its exact location. Unless you read that line, you are
nol reading FORCE.

&=

Ti F bm
W ]

The U™ and V7! scales

The U=* and V- scales are the inverse scales (see Fig. 2b). Follow-
ing stide rule convention, the inverse scales are in red. - The quantities
Joeated on these scales are the reciprocals of the symbols shown. For
example, when F is located on either of these seales, it is equivalent
to F~tor 1/F.

{FORCE)"
T




Operations with dimensions, such as multiplication, division, ctc.,
are performed in the same manner as numerieal caleulations, with the
dimensions taking the place of numbers.

2. Physlcal description

Your Anaron Slide Rule consists of three parts, the bedy, the elide,
and the indicator. Readings are made with the use of the vertical
hairline on the window of the indieator (see Fig. 1).

LEFT RDEX Lol PR LINE

/ N

/ 7~ NI

y / / 1]
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SL(M IriDi-r.‘./ATGI".

Fio, |

The mark associated with the number 1 on & numerical seale 18
called the index of the seale. Each numerieal seale (A, B, C, and D)
has two indices, one at the left end and one at the right end.

The {ront face of the Axatox Slide Rule consisis of seven dimen-
gional seales (three on the glide and two on exch rail) and the A, 13,
C, and D numerical scales.

The U and V scales contain dimensions which are 80 commaon ns
o have standard nemes and symbols.  These ure tabulated on the
reverse face of the AnavLox Slide Rule.

The other dimensional seales contain powers of the dimensions
shown on the U and V geales. The various powers (=1, %, 2) have
been placed on separate scales to make them easier to locate nod to
avoid congestion., The exponents (—1, b, 2) have been omitted to
simplify the appearance. It is helpful to remember that in principle
all dimensions (including powers) could have been crowded onto the
U and V seales.

On the reverse face of the AxaLox Slide Rule is & referenes table
for the 30 symbols used on the seven dimensional seales. This table
also reduces each of these 30 dimensions to & combination of four
basic dimensions; Length, Mass, Time, and Electric Charge.

4



The UY? and VY7 scales

The U and the V' geales are square rool seales (see Fig. 2e)
Quantities Jocated on these seales arc equivalent to the square roots
of the symbols shown. For example, the symbol £ on these scales

represents (FORCE)Y or VFORCE.

Ir2
V- {EQRCE] f : an |
Inm F Ry

Fin. 2c

The V? scale

The V? seale is a square seale (zec g 2d). Quentities located on
this seale correspond to the square of the symbalz onit. For example,
the symbol F on the V? seale represents (FORCID)?

f C
[FORCE]

b

i

2

Fio. 2d

4. Multiplication and division

The seales of a numerteal slide rule wre sequences of numbers arranged
according to a logarithmic law, wherens the dimensional seales on the
Anavow Slide Rule are arrays of symbols representing the physical
quantities. The symbols are located aecording to the physical laws
and definitions.

The dimensions of an equation obey the laws of algebra, thus the
placement of the symbols on the rule is also by the legarithmic scheme.
Each symbol has been assigned a numerieal value.  For example, the
symbol v (Velocity) on the U scale is represented by the number 299
(we ignore the power of ten just ns on numerical seales).

The physical quantitics, e.g. Force, Density, v Mass, (Velocity), etc.,
are ireated as numbers and are multiplied and divided in the same way
as ordinary numbers.



The U and V scales contain the physical quantities direstly, and
correspond numerically to the C and D scales. The inverse scales,
U=t and V-, contain the reciprocal values of the quantities listed on
them, and the UM and V17 and the V? scales contain the square roots
and squares respectively of the quantities on them. Thess awdliary
seales (other than the U and V) are designed to aid and speed your
use of the Avarox Rule

The Anavox Slide Rule scales are set up in the MKS system of
units, Conversion to other svstems of units 1s possible.  For conver-
sion boetween systems, see Appendix 13, page 27

For practice, follow the simple examples given below:

Example 1. Dimensionally investigate the expression

Ql

Awesl’

Method 1.

Set the left index of the C scale® oppasite Q on the V scals,

push hairline to Q@ on the U scale.f
Note that no quantity appesrs on the V seale under the hairline, but
the number on the D scale, 257, must represent the quantity Q° (see
Fig. 3a).

Ly

B N1 R

3!
v

Fia. 3a

Draw ¢ on the U scale under the hairline.

Opposite the right index of C, it appears that /¢ on the V aca_le bhiss
the dimension of a, but close inspection showa that it does not. Be
carefull Remember what we said about accuracy.

* You will find It uselul 1o s the halrline 1o belp st the iuduul s
1 Wa could just an well start by seiting the hairlne to ¢ oa e V opcale, and drawing § on the
U= seals wnder the Lalrics.

7



T
l H - Dy o
i — 1 .
ut A __ __' — II
; .
¢ | f I N
o ] T |

Fia. b

Push hairline to ¢ on the U™ seule (see Fig. b,

(the V scale now shows Q1/17)

draw ¢ on the U seale under the hurline,

opposite the index resd ' (Foree) on the Voseale under the hacline
(see Fig. d¢).

The factor 4x 18 purely numerie, nnd does not cater into the dimen-
sional ealeulations,

Method 2.

The amount of work in Method 1 may be considerably shortensd
through the use of the auxiliary scales.

Push hairline to @ on the V? acale,

draw & on the U scale under the hairline,

push hairline to ¢ on the U~ geale,

at the hairline read F on the V seale (ses Fig. 4).



\ ut .‘
D : _[‘z‘

Fia. 4

The result shows that
QI
Axel
16 dimensionsally equivalent to F (Force). This is as it should ba
since physically it represents the fores of repulsion between two iden-
tical charges @ separated by & distance (.

Example 2. Consider the calculstion of

v(Inductance) % (Capscitance) = 7
Symbolically, this is
L\ s OV o 7
since the square root quantities sppear directly on the Axavon Rule,

Set the right index of the C seale opposite L on the V147 geale,
push hairline to € on the UMY seale,

the result T (or «=)* is read under the hairline on the V scale
(see Fig. &),

+
[ S | [
[T !
d | :
I ; '
1

S

Fio. &

wose murerical factors are lgosred co the Awitos, « (mediscs/eec) a=d
i {c:r'd—.r‘ml e d.{miau.lly eqeivalzat

?



5. Quanltities not shown

When a specific quantity (or & combination of quantities) is of interest
to you, and it dees not pppear on the rule, it may be easily edded.
Using the edge of the indieator as a guide, serateh the mark with the
point of & compass (or other sharp instrument), and Gl the indenta-
tion with ink. Record the new symbzol in your manual, or on the
reverse face of the AnvavLox Slide Rule in the same manner. I, for
example, the dimension pressure (force divided by area) appesrs often
in your work, it muy be easily sdded. Sinee F/A falls at 1967 on
the C & D seales, the edge of the indicstor may be set to this value
and usced rs a guide for seribing the mark,



CHAPTER I
DIMENSIONS, UNITS, AND DIMENSIONAL ANALYSIS

6. Dimensions and units

You do not need to understand the theory of logarithms 1o operste &
numerical slide rule, hut you must completely understand the mathe-
matics to which you are epplying the slide rule. Similarly, in order
to use the Anarox Slide Rule, you must understand the fundamentals
of dimengions and units,

A dimension is & tag or a label. Tt is the name we give to a physi-
cul quantity. Familisr examples are: foree (F), veleeity (v) and
length (£).

A unit is the smount of a physical quantity that is assignad the
size or value 1, or unity. For the dimension “length”, the unit of
measurement might be the foot or the yard or the meter, ete. The
size of units are dictated by convenience. A carpenter uses feet and
inches, whereas an atomic physicist might employ the angstrom ss
the unit of length.

The relationships smong the physical quantities—the physiesl
laws—are expressed s equations.  Such an equation, for example,

expresses the gravitational foree of attraction F between masses my
and m; separated by distance ¢, The symbol G is & proportionslity
constant. The equation must be dimensionally consistent; that is,
the combination of quantities on the right hand side must be equiva-
lent to force. The constant ¢ must be of such size and dimension
that the equation balances numerically and dimensionally. The quan-
tity & depends upon the units chosen. Asan example, if F isin dynes,
m in grams, and ¢ is in centimeters, then

Fo

Iy

G = = 6.67 X 10~ dyne cm?/gm’.

1



If » different system of units is chosen, @ will have a different numeri-
cal value and different units, consistent with the new systern.  Iu
should be elear that the dimensions of ¢ will not in general change,
(Force) (Length)’
(Mass)? )

It remains

A similar example is Coulomb's faw,

oo K
(’,
This expresses the force of repulsion & between charges wnd g
separated by distance £ By selecting £ various systemns of units may
be defined. If F i in newtons, g in conlombs, and £ in meters, then
k is given by

1 .
Boem o = 0% 10Y newton (meter)?/ (eoulomb)
dme

If we seleet & = 1 and dimensionless, the units are thase defined s
electrostatic systenm of umts (osu sys )
dimensions of the constant into the physical guantities of the esu
system. For example, g in the esu system containg u power of the
velocity of light in its dimension.

yoanid we have absorbed the

We have no control over the dimensions of quantitics exeepl ss new
quantities of interest are defined, but we Luve relative

the choice of the system of units to e employed e phven situslion

o aver

There are several standard systems of units in use today. T all
of the systems, the dimensions of wll pliysical quantitics can be
expressed in terms of & few basic dirnensions.  Far exnmple, if length
(L), mass (M), time (T} and clectric charge () are selected as brsic,
all other quantities® mey be expressed in terms of them. Velocily
will be L T, force would be M L T77, ete. Which dimensions are
chosen as basic is determined by the relative ability to measure thi
quantities of interest. A syslem often used in seience and engineer-
ing is the MKSC system (Meter, Kilogram, Second, Coulomb). This
is & system whose basic dimensions are length, mass, time, and charge.
If current is easier to measure than electric charge, then the bagie
dimensions would be L, M, T, and [, where @ would be [ T dimen-
sionally. In 1060 the General Conference on Weight and Measure

*f we want to include thermaodynamic prebloma, we Sl pe=d an additional basic dimene
s#so—Temperatare.

12



adopted the MEKSA system (Meter, Kilogram, Second, Ampere)
as standard. This system is called the SI system—the Systéme
I'nternationale.

7. Dimensional analysis

Ihysical equations are dimensionslly homogeneous. This means that
cach term of an equation must be expressed in the same combination
of basic dimensions. Clesrly, s dimensional check of an equation
will not show purely numerica) factors, algebraic signs, ete., but it
will disclose many possible errors. Consider the {ollowing example
i which we wish to check the expression dimensionally:

M r;r

mNL’

where v is the veleeity of o bullet of mass m fired into s ballistic
pendulum of mass M and length L, x being the forward trave! of the
pendulum and g the aceeleration of gravity,

Replacing each quantity in terms of the bssic dimensions M, L

and T,
é} 2 [L0y] LT [f;
7|5 TN B L
we see that the expression checks dimensionally.
If & physical situation may be formulated in terms of n quantities
(Mapss, Foree, cte.), and the n quantities may be expressed in terms
of m basic dimensions, then there are (n — m) different dirnensionless
constants that may be formed.  This concept is useful in deriving
possible fermulas.
Ii & problem involves only = (distanee), v (veleeity), and ¢ (time),
Wen n =3 and m = 2 (L and T). There is only one dimension-

. . - .
less quantity which ean be formed: :-:E' or '—I The Anavon Slide
Rule quickly shows that x and vt sre dimensionally equivalent.

Consider the problem of deriving (or recalling) the formula for the
period of oseillation of & simple pendulum. The period { is assumed
to be & function of the length ¢, the mass m and the peeeleration of
gravity g. We can express this combination in the form

& = dimensionless constant = 1°g‘m?

13



where the exponents are to be found. Since we nre looking for (in
terms of the other quantities, we select the value of a as 1 (unity)
and solve for ¢,

t = kL tgtmm,
or in terms of basic dimensions,
[T] = k(L) [LT] LM

Equating the exponents of the basie dimensions on both sides of the
equation, we get

L+ 0=—-b—¢

This is known to e the eorrect form. An experiment would show
that & = 2x. Note that if we had not selected the value of a, we
would have had four unknowns and only three equations,  We will
do this problem with the Axavox Slide Rule in Chapter 1L

Here is another simple example, We wish to determine & possible
form for the kinetic energy W of a moving body of mass m and
veloeity v.  Proceeding as before, we get

ko= Wember,
and selecting a as 1, we obtain a salution,
W = km=ve.
In terms of basic dimensions obtained from the back of the Anarox,
[(MTL])= LM LT (TT"

Equating the exponents of the basic dimensions on both sides of the
equation, we get

L 2= -
M 1= —b
T :=-2=c



This gives b = —1, ¢ = —2: and the final equation is
W b,
You will recognize this when k = §.

Later you will sex how the Axaroxn Slide Rule can belp you solve
the abave problems with ease.



CHAPTER 111
APPLICATIONS
8. Dimansional chocking

Dimensional checking of equitions 15 used o detect eorors saeh as
missing factors, incorreel powers of terpes, eies Bxamples 1 oaond 2
illustrate dimensional checking.

Example 1.
Check the expression

uad AL sin ¢
Awr?

Al =

giving & B field, A8, due to an clemental length of conductor, 37,10
terms of eurrent [ and the geometry of the problem. The left hand
side is magnetic flux density,  The sin 6 wnd the Ge are numeries
(dimengionless) and A¢/r? is cquivalent to one over length. Oo the

Anaron Slide Rule, 225 05 seen to be equivalent dimensionully to §,

¢
thus checking the equation s far ns consistent dimensions are con-
carned.

Example 2.

Refer to the first example on page 1 the ntroduction.
resistanee X charge
inductenee

Y]

= current? Symbolically, is

Is it true that
)

To check this equation,

push the hairline to # on the V seale,
draw L on the U scale under the hairline,
push the hairline to Q on the U scale,
under the hairline read [ on the V scale.

The answer is YES.



9. Recalling formulas

In trying to recall specific formulas, the physical qusantities involved
are often remmembrered, but the specific way in which they appear is
nat elear. The Axavon Rule is an aid to remembering the correct
form of formulas. Examples 3 and 4 illustrate the prosedure.

Example 3.

la the repulsive force between two electric cherges ¢, and ¢ seps.
reted by o distance r given by
Fath e 0B,
Fwer Aweer?

Set the left index to @ on the Ve scale,

push the hxirline 10 ¢ on the U~ peale,

draw ¢ on the U scale under the hairling,

ab the left index read Force, F, on the V scale,

Therefore the formula with r* is the correct one.

Example 4.

I trying to recall the formula for the capacitance C of & conducting
sphere of radius r, you reeall that € depends upon & and r, but you
do naot recall the exact form. s it

- ] - tal - r
Lo Ry =—, or (=-—7
drr dr AT

The Avavox Shide Rule shows that «f has the dimensions of capaci-

. o - gl
tance, therefore ' = =
Ar

10. Deriving formulas

It was shown in Chapter 11 that dimensional analysis is & powerful
tool for deriving possible formulas. Since the Axarox Rule contains
the dimensional information of the physical quantities, it may be
employed to do the dimensional analysis. Examples 5 and 6 illustrate
this procedure.

17



Example 5.

We wish to derive a possible formuls for the period of oreillation
of a simple pendulum (seo Chapter 11, Section 7). We know {or we
assume) that f depends upon the length and the mass of the pendulum
and the acceleration of gravity, of some form

t = ktgtm’

We must determine values of a, band ¢ such that the right hand sids
of the equation has the dimensions of time. The Axavon Shde Rule
shows that ¢/g has the dimension of 77 on the VF oscale, and (g has
the dimension of v?, neither of which contain & mass term, The o7
i not useful as we do not have an additionst length term, Sinee minss
cannat be ineluded, we conclude that © = 1, and sinea ¢fg s T the
result is

Example 6.

What is the formula for the kinetic energy of amoving particle of
mass m and velocity v? This one is very cusy, Assuming a solution
of the form

W = Ekm*"°,

only two exponents are to be found. The Asavos Slide Rule shows
that mo is momentum, pn, and that multiplying p- by v gives W,

work or energy, and

W= ket

No other combination of m and v will dimensionally yield enecgy

11. Performing numerical calculalions

The A, B, C, and 1D seales of your ANaLos Slide Rule may be used
for multiplication, division, proportion, squares, and square roots. If
you are not familiar with numerical caleulations with a slide rule,
refer to one of the many manuals on the subject, such as the K&
Decr-Lon® Manual No. 68 2068.

18



12. Relating the numerical and dimensional scales

The numerical seales used in conjunction with the dimensional scales
allow you to consider guantities and combination of quantities not
murked on the Anaron Rule, snd to work with combinations of quan-
titica which do not represent a particular physical quantity. Remem-
Ger that the physical quantities sppesr on the rule as symbols, but
arean fact locations of specific numbers corresponding to the particu-
lur physical quantity.

A combination of quantities may fail betwesn symbols on the rule.
You recall this happened in Example | on page 10, The following
example ustrates the numeriesl and dimensional scale interrelations.

Example 7.

The resistance of & uniform conducting. wire of length L, cross
section ares A, and conduetivity o is given by
i
a 1‘1

If we solve this expression for o, we get
L
q =
kA
This has the dimensions of (££)7". We see on the Axavoy Slide Rule
that (#¢)! falls near the quantity « on the V scale, at about 762,
This number now represents o, conductivity, and the symbol may be
udded to the rule, or the number may be recorded in your manual in
Table 1. 1f the number near 762 appears in future problems, you
might expect it may be ¢, and a detsiled investigation of the problem
will yield the answer.
You must be careful! 1f the number 755 oecurs in & dimensionsl
investigation, sinee it falls between a and ¢, you must refer to the
physics of the problem to determine the correet quantity.

A Word of Caution.

You must not let the Axavox Slide Rule do your thinking in_n
physicsl problem. A basic understanding of physics is Mecessary in
the solution of a problem. Your Axavox Slide Rule is an aid. .It
saves you work to frez your time, and it indicates possibilities, which
you may follow through.

19



CHAPTER IV
PRACTICE PROBLEMS

13. Solving probloms

The following group of problemes are for practics in becorning faumilar
with the operation of the Axavos, wnd to further lustrate the type
of problem for which the Axavon s upplicable. The problemns are
relatively simple so that you may casily verify the solutions using
conventional dimensional analysis techniques.

Work the problems using the Asavos Slide Rule alone, and then
compare the ease of solution with that of the conventional methods.
The solutions to the problems are listed at the end of the Chapter

For additional practice, select relations from a physics or engineer-
ing beok., You will be pleasantly surprized at the consistency of the
Anaton Rule.

As you work thesze and other problems, keep the following pomnts
in mind:

A. When using the Axavox Shde Rule, as i reeular dimensionul

analysis, an algebraic sign (4 or — ) @5 ignored.

B. Quantitatively, 6 feet -+ fret = 10 feet, but dunensionally

length + length = length. The number of terms in an equation is

unimportant dimensionally ws long ns they are consistent,

: : s T 5 ,
C. Numerical quantities such as 5, =, cos " log 7.5, ete. are not
)

considered.

D. The symbols for the physieal quantities cre not all stanlarid,
In addition, in & given problem several symbols may be employed
for the same type of physical quantity. For example, length ¢,
radius r, distance x, wavelength X, ete. are all length, Witha little
practice you will easily find the correct symbol on the AnsLoN Rule.

E. In such functions as ¢*, sin 8, cosh &, ete., the quantities z, 8, &
must be dimensionless. For example, in ¢*', a must have the dimen-
sion of 1/T such that «f is dimensionless,

20



F. Dimenstonally, the interpretations of derivatives snd integrals
are very simple,

The n** derivative of a quantity y with respect to z is dimen-
swonslly y/z% For example

<

dr_i{r} is EL—,;.;—]dnm‘:n.&i(mnll}'.

The integral of y with respeet o 7 s dimensionally yr. For
exnmple

Jilode s [IT] dimensionslly

14, Exorcises

Solve the following problems.  Use your Axavron Rule first,

. B » - r—
1. What is the physical meaning of the expression \J' 2 , where Fig
I3

the tension in a stretehed wire of mass per unit length u?

. Find the correct expression for the inductance of & solenoid of
N turns, length ¢, eross section ares A, and permesbility u.

N o Nt
() L= —t;‘-—. le) L = 7
B eI ] - S8,

A A

3. The expression for the period of oscillation of a compound pen-
dulum 1

T "IE:_
T - \'I myh -

where m is the mass, ¢ the acceleration of gravity, and h the dis-
wnee from the center of gravity to the point of suspension.
Petermine the unknown quantity .

1. What is the interpretation of

(@) \)E , (b)

Can you relate them?

fl-
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5.

10.

What is the relationship between the energy W ool a photon, und
its frequency f7
. Which of the f(!”O\.!-’iN[; i‘h‘])r'!'i‘sil'lrir- are comvalent 1o I_rt'qlu‘m-‘,"’
; N ., IS fRe 1
{1 () — =— + il
fa) &, TR NG T Te
Oisf O30
by fe/4. (e il i
by /L, ) RO
(e} C/H,

. Find the incorrcet term in the following expression mvalving

translationnl and rotational kinctie cniergy, where [ FEPresents
the moment of inertia.

. The peried of oscillation T, of a simple pendulum (s & function

of its length L (among other things). Two different perinds
Ty & Ty corresponding to the Lwo length Ly & L, are measured,
and we would expeet a relationship of the form

Tou (L)
. "\L)

Can you find the value of @ employing the Axavox Rule?

. A student finds in his elass notes that power loss inan iron cored

choke conducting an alternating current is given by the expression
P = =BHVS.

In his haste in recording the formula, he neglected to identily the
quantities involved. He has forgntten whether 1V is voltage or
volume., Which is it?

Find the value of n such thut the combination

.Dpl'“
u

i & dimensionless group (& dimensionless combination of quanti-
tiea related to a specific area). This group is enlled Reynolds
number, employed in fluid dynamics.

22



D — Diameter of cross seetion of fluid channel
p— Fluid density

V — Average fluid velseiny

u— Fluid viscosity

Note that the symbol o dun noL appesr on the Anavow, It
would appear at the value 2282 on the flwr‘uk and has the dimen-
1]

[LT]

sions of Mass per Length per Time or

- Find & possible expression for electrical power P in terms of

voltage applied V, resistance &, inductance L, and capacitance (.

- Perform a dimensional cheek on the differentisl expression

¥
de V-
=-¢

#=E

. Perform w dimensional cheek on the differenus! equation

a* dai 1 v
Ld—{:‘rﬁ'—iTE,ng.

. Perform & dimensional check on the integral forms of Maxwell's

cquations (the basic equations of electromagnetic theory),

(&) Citiss Jaw (Eiackrie): _{B . 8 =,

(b) Gauss' law (Magnetic): §§ ds = 0.
— ,.4,",},3} o 26D B
(e} Ampere's Jaw: 5 =1 T mf s,

(d) Faraday's law of induction: fE di = —l:gé-

where E — Electric field intensity

B — Magnetic induction

H — Magnetic field intensity
s—surface (over a closed surface)
¢ — length (along a closed curve)

D — Electric displacement

¢ — Magnetic flux

t— Time

q— Eleetric charge

23



13

I+

. Solutlons

. Veloeity (of o transverse wave ju the wire)

[

. A (moment of 1nertia)

~{a) forw (frequency)

(b) v (velocity)
po= ft, where £ must now be waveleag

W= LS Here, you will recope thes partienlar sngulbiar ioo-

mentum as Plank's constant, &

s liydeds

N L7 fw
. The expression 5— shonld be =

2m e

. No. Both terms nre dimensionless ratios
.V ois volume.

.n=1

. The expression is dimensionully correet,

CI/7] = [¥/L], and [RALT = [1]
sueh that the exponent i dirmensionless
The expression is dimensionally correct.
[LI/T'] = [RI/T]) = [1/C] = (V/T]
(a) (D] = [Q] The expression is dimensionally eorreet,
(0) Zero is dimensionally indeterminnte, henee no dimensional
check is possible.
(c) [H¢)=[I])=[DE/T]. The cxpression is dimensionally
correct.
(d) [£¢) = [&/T] The expression is dimensionally correct.
24



APPENDIX A

UNIT CONVERSIONS

Converting a physical quantity from one unit to another, such as
converting power from watls Lo horsepower, or pressure from pounds
per square ineh to newtons per square meter, can be accomplished
with the use of tables of unit equivelents such as Table [I. The need
Tor very extensive tables containing all passible equivalent unit conver-
stonsg cun be avoided by reducing the quantities of interest to & set of
busic dunensions and converting the units of these basic dimensions.
Anyset of basie dimensions may be chosen, such a3 Length-Mass-Time-
Churge, Length=-Mass-Time-Current, Lengih-Foree-Time-Charge, ete.
liowever, the choiee will normally be dictated by the quantities to
L converted.

As un exumple, it is required Lo convert a mass density of size po
i gm/em?® Lo its equivalent velue in lb/in?. The quantity g is in
terms of basic dimensions Mass and Length, thus the needed relation-
ships i the two aystems are for Mass® (pounds & grams) and Length
(nehes (& centimeters). From Table [a,

Fkgm = 2205 b (or 1 gm = 2,205 X 1072 1b);

s wherever the unit “grams'’ appesrs, 1t is 1o be replaced by its
cguivelent in pounds, or multiphied by the number of pounds in one
gram (Ib/gm). That is,

pmilh/gm) = b, or gm{2.205 X 107%) = ib,

which is stated as “number of grams times 2.205 X 1077 equals
aumber of pounds,”

F P nd
* The ol (1h] i o mzasure of tnan in The Foot/ Poeed-mam Second [ #) syutem, .
] 1wn‘urer§flroxm in the Foet/ Pound-lerce/Second ll (13 Y] ,;qncm [n th= intber, loroe ie & basic

dimenuicn.
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Similarly, since
1 meter = 10%m = 3.25 ft. = 394 in.,
em = 3040, thus (in/on) = 304,
and  em(in/em) = in.,  thus eo?(in Jem)® = in?,
or  emP(L30Y = omd (0011 = in?

The density conversion is now

_I{J}ﬂtj_{“ﬂ‘)_ o i':ﬂ_{i)sti_l “_J = 0561 I/ et
P emin, fem) P A611 ine o e

26



APPENDIX B
DIMENSIONAL SYSTEM CONVERSIONS

Conversions sroong dimensional systems are generally performed
through the use of tables such as Table 11b, but it is interesting to
leok st an example in some detail. The term “dimensional system
conversion' might tend to be misleading, sinee systems are defined
by themselves and are not dependent upon other systems. They are,
Lenwever, related in terms of the defining equations of the svstems.

Consider the foree between two electrie charges in the 8 (MKS)

and the esu svstems.

SI System esu System
s
1 p oG
dae, eor T

where the quantities are:

Fin dynes

) in statcoulombs
roin centimeters

Fan newtons
(¢ in coulombs
Foin meters

Amp sec

¢ in farads/meter, or —— -
volt meter

and ¢ is dimensionless in hoth systems,

To determine the relationship between electrie charge in the 31
systern and electric charge in the esu system, consider a force of one
newton st a separation of one meter in free space (¢ = 1), Recall
that 1 newton = 10° dvnes and 1 meter = 10° centimeters.

SI System esu System

. Q
10* dyne = m

1 newton = m

27



or

Q = Viwe coulomb @ = V10 statcoulomb
ar
V10 -4 10+
Q= % eoulomb G = ?l:U atuteoulomh,
Thus, Quan [2998 X 10 = Qran

or
1 coulomb = 2008 = 10 stuteoulomb (see Tuble by

The reader is referred 1o any of the many text hooks on clectro-
magnetie theory or dimensional systens for more complete diseussions
of the esu and emu systems,
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Table | BASIC DIMENSIONAL EQUIVALENTS

Blank spaces ut the bottom of this table are for the addition of
other frequently used quantities.

__ ) Basic Dpgensions
Hru- QUANTITY
BOL Length| Mass | Time| Cherge
;_u_‘ Acceleration 4 T3
r B Mugnetic Induction M el G e
(Megnetic Flux Density)
o Capacitance & M= Q@
LD Ilectric Displacement s Q
(Electric Flux Density)
E Electric Field { M ™| g
F Faoree { M Vi
H Magnetic Intensity Lt pap S R 2
5 Moment of Inertia Fiad M
1 Electric Current ™| Q
i Spatin] Frequeney [t
L Inductance M 2
L. | Anguisr Momentum, Action M T
! Length 4
g Arca
A Volume
M | Mass M
P | Power & M| T
P, | Linear Momentum { M | T
(Cont.)
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Table | BASIC DIMENSIONAL EQUIVALENTS (Confinued)
Basio Disenaions
Hyu- QUANTITY —
BOL Length | Mass | Time | Charge!
Q Charge )
R Resistance, Reactance o _ \ .’.;'—' Q—-’
T Tirne, Period o ;__
v Potential (Voltags) - ) _{" M =\ o
v Velocity (___ II— o
W | Work, Energy, Torque { ;_ } - .
« Angular Aceelerntion o T,‘.“’ |
@ Eleetrie Permitivity {1 | M- TR Qf__
wo | Magnetic Permeability ¢ | M Q-
& Magnetic Flux e M ™| g
P Density M _.
@ Frequency, Angular Veloeity g i
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Table lla MECHANICAL UNIT RELATIONS

ll MKS cgs flbm s flbf x
Quanlity Systam Syslem System System
Length | meter 1 3,281 3.2581
cm ft ft
Mass | kilogram | 100 | 2.205 70.94
gm [ Yo elug
[ Foree | newton | 10* 7.233 0.2248
dyne poundel 1bf
Work 1 joule 107 23.53 I 0.7376
(Energy) erg poundal ft Ibf
Power 1 watt 107 23.58 [t 1.341(10)*
erg/sec | poundsl/scc | horse power
Density 1 kg/m* | 1077 62.43(10)7" | 2.008
gm/em?® | Ibm/ft? alug/ft?




Table llb  ELECTROMAGNETIC UNIT RELATIONS

mksa (Abso- cgs ety cgL emu Gaussian
Quantity | lute) System System | System System
4 |
Permit- 8.B55(10)~1 11260101 ]
tivity of | farad/m [ Dhimen-
emply bi\}[l]l:bﬁ]
gpace (e)
Permea- | 1.2506(10)~| 1.1126(10)-%] 1 | !
bility of | henry/m [ Dunen- [ Dimen- |
empty slonlees | sionless ]
space () |
Charge 1 coulomb | 2.995(10)* |01 200801000 |
(Q) stateoulomb |abeoulommb | stateoulomb
Potential | 1 volt 3.336010)= | (1) 3.336010)
statvalt rbhvolt statvolt
Current 1 ampere 2.005(10)¢ 0.1 2.008(10)7
(I statampere | abampere statamperse
Resist- 1 ohm LI126(10)-4] (10)? 1.1126(10)7
ance (R) statohm abohm statohm |
1
Electric | 1 3.767(10)* | (10}~ 3.767(10)¢
digplace- | coulomb/m? | stat- |abeou- stat- |
ment (D) coulomb/em? | lomb/em? (:aulmn'lh;’crtw"—‘i
Capaci- 1 farad 8088100 [ (10— §.985(10)"
tance (C') cm abfarad cm
Magnetic | 1 ampere 3.767(10)* 1.257(10)=% | L.257(10)~?
fiel turn/m Statoersted | oersted oersted
strength
(H)
Magnetic | 1 weber/m? | 3.336(10)~" | (10)¢ (10)*
flux den- stat- maxwell /em?| gauss
sity (B) maxwell/cm?
Induet- 1 henry 1.1126(10)-"2{ (10)* (10)*
ance (L) stathenry em cm
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