A Complex Quantity Slide Rule
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Synopsis.—The need for a device lo shorten numerical work
with complex quantilies i3 pointed oul and a descriplion s

given of a slide rule in two dimensions devised to fill this need.
* * * * -

HE principle of the ordinary slide rule can be
T extended into two dimensional space and ap-
plied to complex quantities.

Up to the present time, complex quantities have been
employed almost exclusively for theoretical analysis
and relatively little in numerical work. Formulas
developed by means of complex quantities are generally
split into components or otherwise transformed so that
the numerical work is always performed with ordinary
numbers. Unfortunately in many cases, formulas
indeed very simple, when expressed as functions of
complex quantities, have very much more elaborate
expressions when thus transformed to adapt them to
ordinary numerical work. An example of this is the
propagation constant of a transmission line.
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Here the advantage of treating the complex quantities
as numerical entities and evaluating merely the formula

n=+2Y
is evident. Seventeen numerical operations would thus
be reduced to two, namely, one multiplication and one
extraction of the square root.

To date, the use of complex quantities in arithmetical
work has been hampered by the two following obstacles,
both of which are removed by the complex quantity
slide rule.

1. Frequently the known quantities are the phase-
angle and modulus (effective value of current or volt-
age) whereas it may be necessary for calculation to
transform this into a complex quantity in the com-
ponent form. This requires a trigonometric trans-
formation from modulus-phase-angle form to com-
ponent form and frequently a second transformation
of the final result from component form back to
modulus-phase-angle form.

2. Ordinary numerical operations upon complex
quantities are long. Multiplication and division are
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performed at present either by elementary algebraic
methods, including multiplication of the conjugate of
the divisor in division or by the modulus-argument
method recommended by Kennelly, which necessitates
trigonometric transformations. By the first method
each multiplication requires four numerical operations
of multiplication and two operations of addition or
subtraction, a total of six operations. Each division
requires two operations of squaring, three operations
of addition or subtraction, four operations of multipli-
cation and two operations of division, a total of eleven
operations. By the second method each transforma-
tion from component form to modulus-argument form
requires two divisions and looking in tables for the
anti-tangent and the sine or cosine of one angle. Each
transformation in the reverse direction requires look-
ing in tables for the sine and cosine of one angle and
two multiplications. When these transformations are
made, two more operations one of multiplication or
division, the other of addition or subtraction are
necessary to effect a division or multiplication of the
complex quantities. This is only slightly shortened
by the use of ordinary logarithms. -

It is very probable that complex quantities will
become more and more useful to engineers and scientists
as time goes on. It is also very likely that the most
prominent obstacle to a wider application of them at
present is precisely the above mentioned cumbersome-
ness which they possess in numerical work. With such
an obstacle removed, many as yet undeveloped appli-
cations for them, would soon appear. In the domain
of electricity alone, alternating current power trans-
mission, telephony and radio, call for many applications
of complex quantities. Their utility extends much
farther offering as they do, very powerful methods of
mathematical analysis applicable to a great variety
of physical problems.

THE COMPLEX QUANTITY SLIDE RULE

It is possible to extend the principle of the ordinary
or Mannheim slide rule to include complex quantities.
The principle remains that of the graphical addition
of logarithms, but the two degrees of freedom pos-
sessed hy complex quantities, necessitates that the
slide rule be extended over a plane surface.

In the ordinary engineer’s slide rule the distance
measured in appropriate units from the left extremity
of the scale to any division on the rule is the logarithm
of the number associated with that division.

In the complex quantity slide rule, the position of a
point in a plane defined with reference to two rec-

1433




134 DU

tangular coordinate axes represents a complex quantity.
This complex quantity is the logarithm of the complex
quantity associated with the point.

Just as points on the ordinary slide rule are located
by means ol a set of non-uniform linear divisions, so on
the complex quantity slide rule points are located by
means ol a system ol curvilinear coordinates. These
curvilinear coordinates consist of two mutually inter-
secting families of curves, a “real” family and an
“imaginary” family, each curve having an associated
number, the numbers ranging from one to ten. The
curves are so arranged that the point at the intersection
of any pair of curves referred to the rectangular refer-
ence axes graphically represents the logarithm of the
complex quantity associated with that pair of curves.

THE CURVILINEAR COORDINATE SYSTEM

Fig. 1 represents the system of curvilinear coordi-
nates. The reference axes are shown by the heavy
lines but since these are not necessary for the operation
of the slide rule, they do not ordinarily appear upon it.
The point P indicated in the figure is at the intersection
of the curve + 3 of the real system and + 4 of the
imaginary system and its coordinate distances from
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the reference axes measured in appropriate units are
1.61 and 0.926 respectively. The Naperian complex
logarithm of (3 + j 4) is (1.61 + 5 0.926).

It will be noted that the system is divided into four
similar patterns and that the numbers of the curves
intersecting in each pattern differ only in algebraic
sign. These signs are (—,—) (4, —) (+, +) and
(—, +) naming the four patterns consecutively from
left to right and giving in each case the sign of the “‘real”
curve first. It is evident then that all complex quanti-
ties, whatever signs be associated with the real and
imaginary components, have corresponding points
on the system and each of the four patterns includes
only those points whose corresponding complex quanti-
ties fall in a given quadrant in the ordinary clock or
Argand diagram. In fact the horizontal distance
measured in suitable units from the central vertical
reference axis to any point in the system is equal to the
argument or phase angle of the complex quantity
associated with that point. Moreover the vertical
distance measured again in suitable units up from the
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horizontal reference axes to any point in the system is
the logarithm of the modulus of the complex quantity
associated with that point. The reasons for these facts
will be found in the appendix. Given a point on the
system ol curvilinear coordinates it is thus possible to
read from the curves the ‘“real” and “imaginary”
components of the complex quantity associated with
that point or to read the phase angle and modulus of
the complex quantity by aligning the point with the
horizontal scale of angles and with the vertical scale
of moduli formed by the intersections of the curves
with any one of the five vertical straight lines. The
alignment is accomplished by a mechanical means to
be described below.

THE CURVES AS A DISTORTED SYSTEM

The curvilinear coordinates may be derived by the
proper distortion of a set of ordinary rectangular
coordinates. This distortion will be described because
it will serve the purpose of giving the shape of the
curves and the operations they perform a clearer
meaning.

If we subject a system of ordinary rectangular co-
ordinates to a process of expansion and contraction
such that all differential linear magnitudes at any
point a distance r from the origin will change in the

o1
ratlo7 then all parts of the system outside a unit

circle about the origin will shrink and all points inside
the unit circle will expand until the final shape as-
sumed will be a cylinder of unit radius. The system
of curvilinear coordinates shown is what would be
obtained by developing this cylinder upon a plane.

Any straight line drawn on the original system of
rectangular coordinates through the origin (this in-
cludes the two principle axes) will swing about an
axis tangent to the unit circle where the line in question
cuts the unit circle, very much as the ribs of an um-
brella swing about the small circle to which they are
attached while the umbrella is being closed. Mean-
while, the length elements of these lines will have
shrunk for those parts originally outside the unit circle
so that what were equal divisions will now have become
much more crowded as the distance from the unit circle
increases. Fig. 2 shows the initial and final states in
this distortion process.

It will be clear from Fig. 2 that the principle axes of
the original cartesian coordinates become the five
vertical straight lines of Fig. 1, the end lines being
coincident on the cylinder. It will also be clear why
horizontal distances in Fig. 1 represent phase angles of
complex quantities in the original system. Circles
about the origin of the original cartesian coordinates as
center become horizontal straight lines after distortion.

The horizontal separation of any two points on the
rule measures the phase angle between the correspond-
ing complex quantities.
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DESCRIPTION OF RULE IN SIMPLEST FORM

In order to utilize the above described system of
curves it is necessary to provide a means of graphically
adding the complex logarithms which they serve to
locate. This is accomplished by an element bearing
these curves which is free to translate in any direction
in a plane. This element shown at A, Fig. 3, occupies
an initial position near the center of the board B.
it can be repeatedly returned to this position by bring-
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ing certain fiducial marks f on the board and on the
transparent insert of element A into coincidence. A
second element C consisting of a jointed transparent
celluloid arm bears a small black point which can be
made to coincide with any point on the curvilinear
chart A and will maintain the position of that point
relative to the board B unchanged while the element
A is undergoing translations.

The ordinary slide rule differs from the complex

Fic. 3

quantity slide rule in that the former is provided with
both a stationary and a moveable scale while the latter
has but one system of curvilinear coordinates. The
operation of multiplication is performed as follows:
With A in its initial position the pointer C is set to
coincide with one of the complex quantities to be
multiplied. The element A is then translated so as
to bring (1 +;0) or (10 + 7 0) under the pointer C.
The pointer C is then set to coincide with the second
complex quantity to be multiplied. The product is
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read off by returning the element A to its initial posi-
tion and reading the curves which now intersect upder
the pointer. The evaluation of a fraction containing
factors in numerator and denominator can be rapidly
accomplished by a similar process.

Some care must be exercised as regards the decimal
point in setting complex quantities on the rule. The
curves are numbered up to 10 and in order to accomo-
date complex quantities whose components exceed 10
the decimal point is shifted the necessary amount in
both components of the complex quantity. This shift
is to be chosen so as to make the larger component
fall between one and ten. It is important that both
components should undergo the same decimal point
shift.

The same difficulty of “running off scale” which
occurs in the use of the ordinary slide rule appears in
the complex quantity slide rule. This difficulty is
avoided in a similar way and is completely absent in
the improved form of the rule. It is evident that a
displacement of either the rule or the pointer through a
vertical distance equal to the distance on the rule from

Fic. 4

(1 4+70)to (10 + 7 0) affects only the decimal point
of the result. A horizontal displacement through a
distance equal to the horizontal length of the rule has
no effect on the result since it is equivalent to rotating
the complex quantity through a phase angle of 360.
If then a point falls off scale it suffices to move either
the rule or the pointer through one or.both of the above
displacements to bring it back on scale.

IMPROVED FORM OF RULE

Fig. 4 shows an improved form of the complex
quantity slide rule.

The translatory movement of the chart A is guided
by a cross arm device sliding in grooves in the top of
the board B and the bottom of the element A.

The pointer is replaced by a celluloid rectangle C
bearing two pairs of intersecting straight lines forming
a rectangle whose length is equivalent to a displacement
of 360 deg. and whose height is equivalent to a dis-
placement from (1 4 7 0) to (10 + 5 0).

Any of the intersections or corners P of this rectangle
may be used interchangeably as the fiducial point in
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operations upon complex quantities since an inter-
change of corners only affects the position of the
decimal point in the result. Since one of these corners
must always be on the curvilinear chart there ean be
no difficulty from running ofl scale.

The straight lines on the “indicator” as the celluloid
rectangle is called serve the purpose of aligning the
point in question with a scale of phase angles provided
on the top and bottom edges of the rule and also with
the scales of moduli formed by the intersections of the
curves with any one of the vertical straight lines.
There are vertical scales of equal parts on either end of
the rule which permit by means of these same lines
on the indicator to read off the logarithms of the
modulus of a complex quantity. In Fig. 4 the indicator
is shown set on (3 +j54), M = 5, 6 = 53 deg. 10 min.

The indicator is also provided with horizontal cosine
or power factor scales which permit of reading directly
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It is thus possible by means of the complex quantity
slide rule to perform multiplication, division, involu-
tion and evolution of numerical complex quantities as
well as to find the logarithms of complex quantities,

The time saved over what is required hy ordinary

longhand methods is very great. A single example
will suflice to illustrate this.
ILLUSTRATIVE EXAMPLE
The current that a certain generator must supply
when a transmission line is short circuited at the receiv-
ing end is given by
(0.920 + j 0.0356) (0.000445 4 5 0.002062)

(0.0815 + 7 0.402) (0.32 + 7 0.77)

Shifting the decimal points as explained above by
equal amounts in one and the same complex quantity
so as to bring the larger component in each case to a
value between unity and ten gives

I = 81200
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Fig. 5—ELEMENT “A” oF SLibE RULE

the cosine of the angle between a point on the rule
representing a current and a second point representing
a voltage.

The horizontal and vertical scales of equal parts on
the rule permit of reading directly the phase angle and
the logarithms of the modulus of any complex quantity.
A second complex quantity formed of these two read-
ings with the angle as the imaginary component is the
common logarithm of the original complex quantity.
(In order to obtain the natural or Naperian complex
logarithm the units would have to be reduced to
radians and base € logarithms.) If then any power or
root of a complex quantity is desired it is sufficient
to multiply or divide the readings of these two scales
by the index of the power or root. The power or root
is then read off the curvilinear chart at the point which
Is in alignment with the new dividend or multiplied
readings on the scales.

_ (9:20 + ;7 0.356) (0.445 + 5 2.062)
(0815 +54.02) (32 + I

Set the rule in the initial position. Set the indicator
over the first complex quantity (9.20 + 7 0.356).
Move the rule so as to bring the indicator over the
quantity (0.815 + j4.02). Move the indicator over
(0.445 + j 2.062). Move the rule so as to bring the
indicator over (3.2 + J7.7). Finally move the indi-
cator over (8.12 4 50). Return the rule to its initial
position. The result found under the indicator is
(1.87 — 7 4.22).

The current is then

I = (187 - 74.22) 10° = 187 — ;422

The modulus or magnitude of the short-circuit
current is read off where the horizontal line of the
indicator crosses any one of the vertical lines of the
rule. Itis M = 4.61 x 102 = 461 amperes. Without

X 812 X 102

"
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" disturbing the indicator the phase angle may be read

off. Itequals — 66 deg.

In this problem the voltage was assumed to be on
the axis of reals. The power factor is read off the
cosine scale on the indicator as 0.41 and it is lagging
since the phase angle of the current is negative.

TAKES CARE OF ALGEBRAIC SIGNS

The work here accomplished with five settings of the
rule would require some twenty operations with tables
and logarithms or with an ordinary slide rule. More-
over the danger of mistakes in algebraic signs is largely
eliminated because these are automatically cared for
on the complex quantity slide rule if the settings are
made correctly. The complex quantity slide rule goes
definitely beyond the ordinary slide rule in this point
of its ability to handle algebraic signs. Unlke the
ordinary slide rule the value zero for either real or
imaginary components appears on the rule. The com-
plex quantity (0 + j 0) does not appear however.

TRANSCENDENTAL FUNCTIONS

In many cases transcendental functions of complex
quantities such as the hyperbolic and trigonometric

Fia. 6—CoMPLEX QuaNTITY SLIDE RULE

functions are called for. Tables for such functions of a
complex variable exist so that quantities taken from
such tables could be employed directly on the rule.
It is also possible to construct a complex quantity slide
rule with interchangeable elements bearing curvilinear
systems of coordinates adapted to perform operations
with the transcendental functions. One difficulty,
however, presents itself here. The network of curves
shown in Fig. 1 if extended in all directions over an
infinite plane so as to include all possible values of the
complex variable, would be made up merely of an
infinite number of repetitions of the pattern element
as shown in Ifig. 5, extending above, below and on al]
sides of it. It is this quality of multiplicity which
makes it possible to operate with merely one element
of the pattern, for homologous points in the different
elements differ in absolute magnitude merely by multi-
ples of ten and in phase angle merely by multiples of
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360 deg. But in the case of a set of curvilinear coordi-
nates adapted to some transcendental function of the
complex variable, this convenient repetitive property
no longer obtains. This places a rather awkward
limitation on the utility of such special functional
coordinates.

Fortunately, in the case of the hyperbolic functions,
the complex quantity slide rule affords another method
without modification of the curvilinear coordinates.
This is because the hyperbolic functions of a_complex
variable can be simply expressed as exponentials or
antilogarithms. These antilogarithms can be taken
from the complex quantity slide rule by a process the
reverse of that described for finding logarithms. Thus
sinh (@ +jb), cosh (a 4+ 7 b) and tanh (e + jb) can
be found with the complex quantity slide rule without
reference to tables. A detailed description of these
special applications goes somewhat beyond the purpose
of the present paper which is merely to introduce the
device to the engineering frafernity. It is evident,
however, that many formulas in use today in connection
with alternating current work can be considerably
simplified by modifications which would adapt them
for use with the complex quantity slide rule. The ease
with which ordinary analytic operations on complex
quantities are performed with this device makes it
feasible to compute infinite series and infinite products
of a complex variable and thus to obtain numerical
values of definite integrals and other functions hereto-
fore practically prohibited by the labor of computation.

It is not to be supposed that the complex quantity
slide rule is a pons astnorum to eliminate thinking.
It requires perhaps even a clearer comprehension of
complex quantities on the part of the operator than
would be required by the older methods. It is a substi-
tute for drudgery, not for intelligence.

Appendix
The logarithm of a complex quantity is itself another

complex quantity. To find the components « and B of
log (a + 7 b) let

loge (¢ +50) =a +3b (1)
then
eatib — s ]b
' € (cosB+jsinB) =a+3b
Equating reals and imaginaries separately gives
€“cosfB = a
“sing =0
Squaring and adding
eza = q? 4 b2
a = loge v/ a* -+ b? (2)
Dividing one by the other gives
g b
an 3 = ™
ﬁ = t i .L
=t = 3)
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b
loge (@ + jb) = log ¢ a* + b 4+ jtan ! " (4)

The lower extremity of the central vertical line on
the complex quantity slide rule is the origin point.
The position of any point on the rule referred to vertical
and horizontal cartesian coordinates through this
origin point graphically represents the logarithm of the
complex quantity associated with that point. The real
curves are the loci of all points whose associated com-
plex quantities have one and the same real value (and
a variable imaginary value) and this value is the number
printed beside the curve. The imaginary curves are
the loci of all points whose associated complex quanti-
ties have one and the same imaginary value.

To find the equations expressing the loci, consider
any point on the rule with which the complex quantity
(@ + 7 b) is associated

The coordinates of this point are

y=Ilog va+ (5)
. b
r = tan a (6)

(The interchange of coordinates, 4 being taken for the
axis of reals here is purely for convenience). The real
loci are obtained by eliminating b between these two
equations and the imaginary loci are obtained by
eliminating a. This gives
y = loga— logcosx (7)
y' = log b — log sin x (8)

as the equations of the real and imaginary systems of
curvilinear coordinates. The system is seen to be a
conformal transformation of the type W = Log y.
If the curves are plotted to scales of equal units for
both z and y, all the intersections will be rectangular.
This is not done in the actual rule as it yields a more
convenient shape to compress the z-coordinates some-
what. It will also be noted that the curves consist of a
characteristic part (— Log cos x) and an additive
constant, (Log a). In other words, all the curves on
the rule are intrinsically identical and differ merely in
their position.

From equations (5) and (6) it evident that at any
point on the rule corresponding to (e + 7 b) the y-
coordinate is the logarithm of the absolute magnitude
of (¢ +;b) and the z-coordinate is the phase angle
of (@ +350b). This explains the horizontal scale of
phase angles. The method of reading the absolute
‘magnitudes directly from the vertical scale formed by
the intersections of the curves with any one of the
vertical straight lines will be understood from the
following.

Consider the equations (7) and (8) for the double
system of curves already given. From (7) it appears
that when, a = o, the equation of the “real” curve
becomes
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and from (8) when, b - o, the equation of the "“imagi
nury” curve becomes
0, 4+ 10
In other words at these points respectively the real
and imaginary systems have straight vertical loci.
In each case the intersections of these straight vertical
loci with the other system of curves may be found by
substituting the values (10) into (7) and the values (9)
into (8), giving
vy loga (11)
i’ log b (12)
Thus it is seen that the y-coordinate of the point of
inter-section of each of the curves with the vertical
straight lines is in each case the logarithm of the num-
ber associated with that curve. Thus
y = loga
The y-coordinate of any point on the rule is the logar-
ithm of the absolute magnitude of the complex quan-
tity associated with that point.
Yy = log M
Hence, if the point is horizontally aligned with some
point on a vertical straight line we have
loga =y = logM
a=M
so that by reading the value of @, on any vertical
straight line at the same vertical height as the point
in question the absolute magnitude of the complex
quantity associated with that point is found.

CURVILINEAR SYSTEM AS A DISTORTED CARTESIAN
SYSTEM
Consider first the cartesian system, but divide it
into infinitesmal elements by a system of radial straight
lines and cireles concentric about the origin. If we
subject this to the distortion

ds’ — ds

where r is the radial distance from the origin to the
arbitrarily oriented linear element, d s, then it will be
self evident that all of the concentric circles will as-
sume unit radius, all of the elements of area previously
included between adjacent radii and adjacent circles
will become rectangles on a eylindrical surface and the
radial lines will become elements of a cylinder of unit
radius.

Consider a point which before distortion was at a
radial distance, 7, from the origin. All elements of this
d/ . After distortion this

radius will shrink to d r’ =

point will be at a distance r’ from the original unit
circle on the cylinder.

r=r =r d
4 “F dr
r’=’dr’=]—r = logr
S r=1
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The distortion may be treated as follows.
The equations of the curves in the cartesian co-
ordinates were

iy =, x=0a
Now
ds =/ dyp +dz?
and
ds Vdy +da B —
ds':-———Z —_—_—— = dx’2+d 2
r VvV +y v v
; 5 da* +dy
wl2 2 i e e
dz”+dy L

This is the orly condition imposed by the distortion.
We may choose the value of either d z’ or d ' in any
arbitrary way compatible with the distortion. Thus
we may say

dr =d\/:cz+y2=xd:c + ydy

N T AT
Then

i (xdax+ ydy)?

2= ) -
dy (x2 + y?)?
dz'? = da* + dy*  (xdz + ydy)

) ¢ + ¢ (2 + yo)?
q 5t = 2dy*—2zxydzdy +y*da?
/ (¥ -+ ¥*)*

a x4 o

ol Idy—qu
dzt = T
Integrating

y;:J-@dxj— y({y+c’ x’=fxdy - ydachc1

g2 -|-—y2 72 +

for the curve

o ( edy
’ “f at + y? +a

y =log v a +y*+ ¢ z' = tan™! Z + ¢,
ory = log a — log cos x’
similarly for the curve

y=>b dy=20

¥ = log v/ + 2" + ¢, z' = tan~! - Z + &,

? &

ory log b — log sin '

ifywe choose ¢ and ¢, arbitrarily equal to zero which
amounts to fixing the origin point.
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ARTIFICIAL ILLUMINATION OF POUL-
TRY HOUSES FOR WINTER EGG
PRODUCTION

The fact that the use of artificial light has been found
in some instances, to stimulate winter egg production
by as much as 70 per cent, has brought up the question
as to what intensity is conducive to maximum pro-
duction. The answer to this was obtained only after
an extended investigation covering a period of two
years. As a result of observations carried on jointly
by the Department of Rural Engineering and the De-
partment of Poultry Husbandry of the New York State
College of Agriculture, it was found that the illumina-
tion necessary for active feeding should be in the neigh-
borhood of one foot-candle. It was also discovered that
besides the illymination on the feeding area, it was quite
essential that there be sufficient direct light on the
perches, in order that the birds would not have a ten-
dency to roost there.

The use of a standard 40 watt, clear, Mazda B lamp,
with cone-shaped reflectors, 16 in. in diameter at the
base, by 4 in. high, with reflecting surface of aluminum
bronze, hung six feet above the floor and spaced 10 feet
apart was found to meet the requirements.

In lighting the pen, the poultryman has at his dis-
posal three different types of light; extending the morn-
ing light, morning and evening light, or evening light
alone.

So far as production goes, each method produces
satisfactory results if other conditions of management
are correct. Artificial morning light is used extensively,
because it is the cheapest to install, and lends itself
readily to inexpensive, automatic control by a time
clock. However, the extra cast of installation for
evening light is small, and with this installation any
method of handling may be practised. Whatever the
method, the bird should have a 12 or 13 hour day.

It has been determined that the lights may be turned
on suddenly without affecting the birds, but that turn-
ing the lights off suddenly makes it very difficult for
the birds to go to roost.

In order to bring aboutapractical way for dimming the
lights, the poultryman has at his disposal three different
wiring systems, which are commonly known as:

1. The resistance unit system.
2. The two circuit system.
3. The series parallel system.
A full explanation of each system being given in the test.

In the concluding pages of the bulletin, data is given
as to where control devices may be obtained, and the
matter of the operation of poultry lighting with refer-
ence to the farm lighting plant is taken up. The bulle-
tin is profusely illustrated with cuts which bear out the
statements contained in the text, and really tends to
prove beyond a doubt the outstanding features of the
bulletin. Wiring diagrams for all of the above men-
tioned circuits are also shown in a very simple and
practical manner.—Cornell Extension Bulletin No. 40.




