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1 Introduction & historical background

The following short note describes a method of Newton for approximating roots of polynomial
equations using slide rules. It first appears in Newton’s Waste Book, suggested by [9] around
1665. The method appears then to have been explained to John Collins in a letter of 1672, [7].
Collins was interested in finding the volume of liquid in a partially full barrel as a function of
depth1. This was an important issue in “gauging” – the calculation of various taxes on liquids.
Interestingly slide rules were particularly popular amongst customs officials, for whom they
provided an instant volume calculation, by visual inspection, and therefore instantly settled
the question of how much tax or duty was due. It is reported in [9] that this method was
incorporated by Collins into a general method for solving cubic equations. Collins then wrote
In Answer to Monr Leibnitz’s Letter about Solving a Cubick æquation by Plaine Geometry.
This Answer was passed to Oldenburg who in the following letter, dated June 24 1675, quoted
in [2, pg 21], but also in [5], communicated the ideas to Leibnitz.

Mr. Newton, with the help of logarithms graduated upon scales by placing
them parallel at equal distances or with the help of concentric circles graduated
in the same way, finds the roots of equations. Three rules suffice for cubics, four
for biquadratics. In the arrangement of these rulers, all the respective coefficients
lie in the same straight line. From a point of which line, as far removed from the
first rule as the graduated scales are from one another, in turn, a straight line is
drawn over them, so as to agree with the conditions conforming with the nature
of the equations; in one of these rules is given the pure power of the required root.

In [2] the theory is described briefly, and reference is made to [8] where “Newton’s mode of
solving equations mechanically is explained more fully and with some restrictions, rendering

the process more practical”. In this short paper we do the same, giving worked examples of
both the linear versions as described by Newton, and then Newton’s circular version. Since

1“Wherefore since I understand your designe is to get a rule for guageing vessells, this Problem having so

bad success for yt end I shall in its stead present you with this following expedient” [7], pg 229.
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none of the quoted sources contain an example to the contrary, it may be that the circular
variant of this technique has not before been implemented, owing to the previous difficulty
in producing concentric circular logarithmic scales. No record of a commercial polynomial
solver using a similar method have so far been found. Prototypes, such as that contained in
[6], certainly exist.

Newton, clearly states in [9] that the use of this method is to find “two or 3 of ye first figures

of ye desired roote” in preparation for use of other more accurate numerical techniques. That
being the case it’s absence from recent histories [3, 11, 12] of numerical techniques is surprising.

It is assumed the reader knows the use of a standard logarithmic slide rule. There are many
texts describing its use, however most are now out of print. An exception is [1, Chapter 8].
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2 The principle of Newton’s solver

The principle of Newton’s polynomial solver is explained with reference to Figure 1. We
explain the method with a monic cubic polynomial p(x), satisfying p(0) = 0:

p(x) := a1x+ a2x
2 + x3. (1)

As will be seen below it is more convenient when using this method to solve p(x) = a0, rather
than the more usual algebraic form p(x) − a0 = 0. Neither the fact that the polynomial is
cubic or monic (ie the coefficient of x3 is 1) is necessary. The method will work with an
arbitrary polynomial of the form

N
∑

n=1

anx
n.

Of course, a polynomial of degree N will utilize N logarithmic rules.

Setting up the apparatus

To set up the apparatus we take three identical logarithmic rules and place them in parallel
with equal spacing between them. Working from left to right we refer to these rules as the
primary rule, secondary rule etc. We demarcate an arbitrary base line perpendicular to these
rules and on the base line attach a rotating cursor line at a pivot point, which is as far to the
left of the primary rule as the rules are apart.
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Figure 1: The principle of Newton’s polynomial solver

The numerical relationships

We set the rotating cursor line in position and use the primary rule to measure the length
between the base line and rotating cursor line. This distance, as measured with the rule, we
denote by x. Since the rules are logarithmic the physical distance will be proportional to
log(|x|).

By similar triangles, it is now easy to see that the distance from the base line to the rotating
cursor line on the secondary rule will be twice this, so the the physical distance will be
proportional to 2 log(|x|) = log(|x2|).

In general on the distance from the base line to the rotating cursor line on the nth rule will
be proportional to n log(|x|) = log(|xn|).

In addition to this we can move these rules in parallel. This uses the usual principle of the
linear slide rule to effectively multiply by a constant. Thus if the primary rule is moved so
as the reading on the base line is |a1| the length of rule below the rotating cursor line will be
proportional to log(|a1|) + log(|x|). Thus the reading at α1 will be |a1x|. Similarly, on the
nth rule the reading at αn will be |anx

n|.

Evaluating polynomials

Let us consider the quantity
α1 + α2 + α3
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Figure 2: Reading x directly with an auxiliary primary rule.

(In general this corresponds to
∑

N

n=1 αn). Using the above we see that

α1 + α2 + α3 = |a1x|+ |a2x
2|+ |x3|.

We write sgn(w) to denote the algebraic sign of w, so that sgn(w)|w| = w. Noting that, since
the polynomial is monic so a3 = 1, we have

sgn(a1)α1 + sgn(a2)α2 + sgn(a3)α3 = a1|x|+ a2x
2 + |x3|

If we assume x > 0 then |x| = x so that this reduces to

sgn(a1)α1 + sgn(a2)α2 + sgn(a3)α3 = a1x+ a2x
2 + x3.

In summary: if we add up the readings (the α’s) on the rotating cursor line, respecting the
algebraic signs of the coefficients, we may evaluate the polynomial p(x) for values of x > 0.

For values of x < 0 we substitute −x. Then we have

p(−x) = −a1x+ a2x
2 − x3

so that if, in addition to respecting the algebraic signs of the coefficients, we multiply every
coefficient of an odd power of x by −1 we evaluate the same polynomial for negative values
of x. Examples are below in Section 3.

If a1 6= 1 the value of |x| may be read directly by use of an auxiliary primary rule, contiguous
with the primary rule and aligned with 1 on the baseline itself. See Figure 2. Alternatively
we may take the reading from the last scale and extract the cube (or in general nth) root.
Since the cubic is monic this will be a pure power of |x|.
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Solving polynomials

In the previous section we showed that by calculating

sgn(a1)α1 + sgn(a2)α2 + sgn(a3)α3

and
− sgn(a1)α1 + sgn(a2)α2 − sgn(a3)α3

for various positions of the rotating cursor line we effectively calculate p(x) and p(−x) re-
spectively for x > 0. Thus if we are trying to solve

p(x) = a0

we may do so by finding all positions of the rotating cursor line which creates a sum of the
required amount. Note however, that the cases x > 0 and x < 0 do not require repositioning
of the rules themselves. Only that the values read from the rotating cursor be summed
differently.

3 Worked examples

3.1 A quadratic with two positive real roots

The following worked example shows the rules set up to evaluate the quadratic

p(x) = −7x+ x2.

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1

l1 l2

If we examine the two lines, line l1 gives values

α1 = 14 and α2 = 4

Totalling these with the correct signs gives

−α1 + α2 = −14 + 4 = −10.

Similarly line l2 gives values
α1 = 35 and α2 = 25

Totalling these with the correct signs gives

−α1 + α2 = −35 + 25 = −10.
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Thus we have found two positions for which p(x) = −10. One at x2 = 4, the other at x2 = 25,
both with x > 0, showing that the solutions to p(x) = x2 − 7x = −10 are x = 2 and x = 5.
Expanding

(x− 2)(x− 5) = x2 − 7x+ 10

confirms this.

3.2 A quadratic with one positive real root

Next we consider the quadratic
p(x) = 3x+ x2.

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1

l1 l2

On line l1 we have α1+α2 = 6+4 = 10. Similarly on the line l2 we have α1+α2 = 15+25 = 40,
however, −α1+α2 = −15+25 = 10. Thus x = 2 gives p(2) = 10 and x = −5 gives p(−5) = 10,
showing that

p(x)− 10 = x2 + 3x− 10 = (x− 2)(x+ 5).

3.3 A quadratic with complex roots

Next, in seeking for solutions to x2 − x+ 1 = 0, we consider the quadratic

p(x) = −x+ x2.

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1

The target amount will be values of x so that p(x) = −1. If x < 0 we sum the readings using
signs ‘+,+’ so that this will never be negative. There are no solutions to p(x) = −1 with
x < 0. However in the case x > 0 we sum the readings using signs ‘−,+’. Thus, does the
difference between the bottom and top reading every equal −1? It is far from obvious that
this is indeed never the case (since the above quadratic has no real solutions). However in
the corresponding case of a cubic with three summands it would be very difficult to conclude
the existence of only one real solution.
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3.4 Cubic equations

We here consider the cubic polynomial

p(x) = −31x− 4x2 + x3.

1 2 3 4 5 6 7 891 2 3 4 5 6 7 8911 2 3 4 5 6 7 891 2 3 4 5 6 7 891

1 2 3 4 5 6 7 891 2 3 4 5 6 7 8911 2 3 4 5 6 7 891 2 3 4 5 6 7 891

1 2 3 4 5 6 7 891 2 3 4 5 6 7 891

l1 l2 l3

Reading from line l1, from the top down we have readings 62, 16, 8 which, given the signs of
the coefficients in the polynomial which are ‘−,−,+’ sum as

−62− 16 + 8 = −70.

Reading from line l3, from the top down we have readings
2 217, 196, 343 which, given the

signs of the coefficients in the polynomial which are ‘−,−,+’ sum as

−217− 196 + 343 = −70.

Returning to line l2 we have readings 155, 100, 125. This times we assume x < 0 and in
addition to the coefficient signs ‘−,−,+’ we reverse the signs of the odd coefficients giving
‘+,−,−’. Using this gives

155− 100− 125 = −70.

Taking cube roots of the readings α3 on each line we see that x = 2, x = 7 and (remembering
in this case x < 0) x = −5 are solutions of

p(x) = −31x− 4x2 + x3 = −70

which may be confirmed by expanding (x− 2)(x+ 5)(x− 7).

4 “Stone’s” improvements

In [7], pg 230 Newton remarks in passing at the end that “As also so to proportion ye rulers
BF, CG, DH, &c yt ye line AK may be carried over with parrallel motion”. This idea is what
I term “Stone’s improvements” since [2] defers the explanation of them to [8].

2To within the accuracy of the scales, I read 220, 200, 342 giving a sum, −220− 200 + 342 = −78.
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In this arrangement, which we will explain with reference to the example of the cubic, the
scales used for each power of x differ. Specifically, let the absolute length of the first scale be
l. As before this will be the x scale. The length of the second scale will be l/2, so that two
such scales fit in the same length. This will be the scale for x2. Such scales on a standard
slide rule occupy the B and C positions respectively. The length of the third scale will be
l/3. Such a scale will be used for x3, and would be labelled K on a modern slide rule. By
placing these rules in parallel at a position with respect to an arbitrary base line, a moving
cursor line perpendicular to the rules may be used to evaluate a cubic polynomial.

Firstly, in favour of this method the scales do not need to be equidistant. Secondly the cursor
is now parallel the base line – this may facilitate accurate reading.

In opposition to this method we now need a different rule for each power of x. This signifi-
cantly complicates construction, since there are no repeated parts in the device. Furthermore,
scales for each successive power of x are compressed making accurate reading of the scales
very difficult for the higher powers.

5 Newton’s circular polynomial solver

In the letter of Oldenburg to Leibnitz a scheme for using circular rules is presented. The
construction of such an apparatus will require N concentric circular rules. The nth rule
will, in one rotation, contain n logarithmic scales. However, the rules need not be equally
spaced. A base line is drawn arbitrarily, in our case horizontally, and the reading taken in an
anti-clockwise direction.

In Figure 3 we give an example of such an apparatus configured to evaluate the polynomial

p(x) = −50x+ 35x2 − 10x3 + x4.

The ‘start’ of each logarithmic scale is marked with a dot to facilitate the location of the
decimal point. Thus reading across the scales along the base line we have α1 = 50, α2 = 35,
α3 = 10, α4 = 1. Summing these, respecting the signs of the coefficients and for the case
x > 0 in the polynomials we have

−50 + 35− 10 + 1 = −24.

The lines l1, l2 and l3 also find values of x > 0 for which p(x) = −24.

l1 : −100 + 140− 80 + 16 = −24

l2 : −150 + 315− 270 + 81 = −24

l3 : −200 + 560− 640 + 256 = −24

Taking the 4th root of the values on the x4 scale we see that x = 1, x = 2, x = 3 and x = 4
all solve

p(x) = −24.

Hence

(x− 1)(x− 2)(x− 3)(x− 4) = p(x) + 24 = 24− 50x+ 35x2 − 10x3 + x4.
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Figure 3: Newton’s circular scheme
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6 Practical implementation

The apparatus itself would not be hard to build. In the original form described identical
scales would be used. A transparent plastic rotating cursor with an opaque ruled line would
allow readings to be taken with no more difficulty than on a normal slide rule. Stone’s
modifications require differing scales – however normal slide rules contain these as C, D and
K. The circular arrangement requires different rules and so is perhaps a different matter.
Accurately constructing circular scales is not easy, especially without the help of a modern
computer typesetting package.

It can readily be confirmed by paper experiments that to use the apparatus is not easy
in practice since the implementation requires the simultaneous addition of the coefficients
respecting the signs of an’s and x as appropriate. No doubt a skilled calculator who had
carefully planned the calculation could do this. For solving cubic equations a prototype of
Stone’s modifications has been constructed using three Thornton AD-070 slide rules and is
detailed fully3 in [6]. As suspected it is reported that this is difficult to use.

From paper based experiments, it occurs that the apparatus would be most useful for eval-
uating a polynomial at various values of x, rather than solving the equation p(x) = a0. The
solution is mathematically satisfying and clever. One questions whether any application de-
mands the amount of computation involving polynomial evaluation and root finding to within
the accuracy permitted by this method. Only such an application would warrant the cost of
constructing this apparatus and difficulty in gaining proficiency in its use.

Figures in the current work

This work would not have been possible without the use of a sophisticated mathematical
typesetting package. The text is set using LATEX, the figures themselves use the PSTricks
and multido packages by Timothy Van Zandt, and the fp package by Michael Mehlich.
LATEX and associated packages may be obtained from www.tex.ac.uk. The author is happy
to answer queries about the production of these images, or produce bespoke rules to order.

References

[1] Budd, C. J. and Sangwin, C. J., Mathematics Galore! Discovery Classes, Workshops
and Team Projects in Mathematics and its Applications. Oxford University Press, 3 May,
2001. ISBN: 0-19-850770-4 (Paperback), ISBN: 0-19-850769-0 (Hardback).

[2] Cajori, F., A History of the Logarithmic Slide Rule. J.F. Tapley Co. New York, 1909.
Note, this book contains a flawed conclusion as to the priority of the invention of the slide rule. See [4].

[3] Cajori, F., Historical Note on the Newton-Raphson Method of Approximation, American
Mathematical Monthly, 18(2):29–32 February, 1911.

3Also of interest in this article is a method for solving polynomial equations using a standard slide rule.
Original sources for this method are British patents numbers 878056/7

10



[4] Cajori, F., On the History of Gunter’s Scale and the Slide Rule During the Seventeenth
Century. University of California Publications in Mathematics, 1(9):187–209, February
1920.

[5] Horsley S. (ed), Isaaci Newtoni Opera, London, VI:520, 1782.

[6] Rath, W., The Solving of Equations, Slide Rule Gazette, 2:82–86, 2001. ISSN 1472-0000.

[7] Turn, H. W. (ed), Correspondence of Isaac Newton — vol 2: 1676–1687 , Cambridge
University Press, 229–231, 1960.

[8] Stone, E., New Mathematical Dictionary. London, second edition, 1743.

[9] Whiteside, D. T., The Mathematical Papers of Isaac Newton, 1, 489–490. Cambridge,
1927.

[10] Wilson, J. Appendix to Mathematical Tracts II, Robins, B., 437–50, 1761.

[11] Tjalling J. Ypma Historical Development of the Newton-Raphson Method, SIAM Review,
37(4):531–551, Dec., 1995.

[12] Machines for Solving Algebraic Equations,Mathematical Tables and Other Aids to Com-
putation, 1(9): 337–353, Jan., 1945.

11


